Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

линейный алгебраический численный метод

Часто при анализе экспериментальных данных возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате измерений. При аналитическом исследовании взаимосвязи между двумя величинами x и y получается таблица значений, которую также можно представить в графическом виде.

Если же заведомо известен вид аппроксимирующей функции, то задача аппроксимации сводится только к отысканию коэффициентов (a, b, c,...), входящих в функцию. Для нахождения этих коэффициентов используется метод наименьших квадратов, заключающийся в том, что сумма квадратов расстояний по вертикали от точек до графика функции y=f(x, a, b, c,...) наименьшая: S = i 2 = min, где S i = y i - f(x i , a, b, c,...). Для этого используем необходимое условие экстремума функции нескольких переменных i - f(x i , a, b, c,...)) 2: равенство нулю частных производных. В результате получим систему. Таким образом, нахождение коэффициентов сводится только к решению системы:

Линейная регрессия

Линейная функция имеет вид y = ax + b, следовательно, требуется найти два параметра: a и b, с условием, что даны координаты n точек, найденных экспериментально со случайными ошибками («шумом»). Для этого составим функцию i - (ax i +b)) 2 , раскроем скобки i - ax i - b) 2 и составим систему:

Пусть А = i , В = i , С = i x i , D = i 2 , тогда система примет вид:

Решим эту систему линейных алгебраических уравнений методом Крамера и, таким образом, найдем искомые значения параметров a и b:

Таблица. Имеются точки:

Используя способ вычисления параметров линейной функции, получаем:

a = 0,1215455 , b = - 0,2140002

Рассмотрим гильбертово пространство действительных функций, интегрируемых с квадратом с весом на . Норма в нем равна где скалярное произведение определено следующим образом:

Физический смысл весовой функции будет пояснен в п. 4. Выберем в качестве аппроксимирующей функции линейную комбинацию (37). Подставляя ее в условие наилучшего приближения (36), получим

Приравнивая нулю производные по коэффициентам, получим систему линейных уравнений

Ее определитель есть определитель Грама функций поскольку функции линейно-независимы, он отличен от нуля. Следовательно, наилучшее среднеквадратичное приближение существует и единственно. Для его вычисления необходимо решить систему линейных уравнений (38).

Линейно-независимую систему функций можно ортогонализировать.

Пусть уже образуют ортонормированную систему, т. е. ; тогда формулы (38) резко упрощаются и становятся удобными для вычислений

Это коэффициенты Фурье, так что наилучшее приближение есть отрезок обобщенного ряда Фурье.

Если функции образуют полную ортонормированную систему, то в силу равенства Парсеваля

Значит, при норма погрешности неограниченно убывает, т. е. наилучшее приближение среднеквадратично сходится к у и возможна аппроксимация с любой точностью.

Отметим, что если не ортогональны, то при определитель Грама обычно быстро стремится к нулю, система (38) становится плохо обусловленной, т. е. ее решение связано с большой потерей точности (см. главу V), и больше 5 - 6 членов суммы (37) брать нецелесообразно. Численная ортогонализация базиса при этом тоже приводит к большой потере точности. Поэтому если нужно большое число членов, то надо или проводить ортогонализацию точно (аналитически), или пользоваться готовыми системами ортогональных функций.

При интерполяции мы обычно полагали Для среднеквадратичной аппроксимации удобнее в качестве брать многочлены, ортогональные с заданным весом. Наиболее употребительны из них многочлены Якоби (частным случаем которых являются многочлены Лежандра и Чебышева), Лагерра и Эрмита. Для аппроксимации периодических функций используют тригонометрический ряд; он соответствует Сводка формул для ортогональных полиномов приведена в Приложении.

Все перечисленные выше системы функций полные, так что наилучшие приближения по ним среднеквадратично сходятся при если интегрируема с квадратом с заданным весом. При более сильных ограничениях имеет место сходимость во всех точках и даже равномерная сходимость. Приведем без доказательства некоторые результаты.

а) Ряд по многочленам Якоби сходится к непрерывной функции у равномерно на если существует непрерывная при некотором и если . В частности, для многочленов Чебышева первого рода достаточно а для многочленов Чебышева второго рода Для многочленов Лежандра доказан более сильный результат: ряд сходится равномерно, если существует ограниченная у

б) Если функция кусочно-непрерывная и кусочно-гладкая на и существует

то ряд по многочленам Лагерра сходится к функции в точках ее непрерывности и к полусумме односторонних пределов в точках разрыва. Эта сходимость, вообще говоря, не равномерная.

в) Если функция у кусочно-непрерывная и кусочно-гладкая на и существует

то ряд по многочленам Эрмита сходится так же, как в предыдущем абзаце.

г) Если у периодическая и непрерывная, причем ее модуль непрерывности удовлетворяет условию то ее тригонометрический ряд Фурье равномерно сходится к ней на всем периоде (признак Липшица); в частности, это условие выполняется для функции с ограниченной производной. Если функция имеет ограниченную производную а все младшие производные непрерывны, то для погрешности тригонометрического ряда Фурье и величин отдельных коэффициентов справедливы оценки

где А - константа. Видно, что при больших ряд сходится быстро. Но если кусочно-непрерывна, то сколько бы ни было у нее кусочно-непрерывных и ограниченных производных, ее коэффициенты Фурье убывают не быстрей и ряд сходится медленно (или даже расходится).

Замечание 1. Сходимость не во всех рассмотренных случаях была равномерной. Более того, не существует такого веса чтобы любая непрерывная функция разлагалась в равномерно сходящийся ряд по полиномам, ортогональным с этим весом. Буа-Реймондом и Л. Фейером были построены примеры периодических непрерывных функций, у которых тригонометрический ряд Фурье в отдельных точках расходится.

Замечание 2. Сходимость среднеквадратичного приближения тем лучше, чем меньше у функции особенностей - разрывов ее самой или ее производных. Если можно выделить основные особенности в виде несложной функции и аппроксимировать разность у точность аппроксимации существенно улучшается.

    Линейная аппроксимация - (Linear approximation) – см. Аппроксимация, Линейность в экономике …

    линейная аппроксимация - линейное приближение Аппроксимацией называется приближенное выражение каких либо величин или объектов через другие более простые величины или объекты. При линейной аппроксимации приближение строится с помощью линейных функций. ] Тематики защита информации EN linear approximation of block ciphers … Справочник технического переводчика

    кусочно-линейная аппроксимация функции - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN piecewise linear approximation … Справочник технического переводчика

    Аппроксимация - «замена одних математических объектов другими, в том или ином смысле близкими к исходным» ; в частности приближенное выражение сложной функции с помощью более простых. Например, при кусочно линейной А., непрерывная… … Экономико-математический словарь

    аппроксимация - «Замена одних математических объектов другими, в том или ином смысле близкими к исходным» . В частности — приближенное выражение сложной функции с помощью более простых. Например, при кусочно линейной А., непрерывная… … Справочник технического переводчика

    Группа линейных преобразований векторного пространства Vконечной размерности n над нек рым телом К. Выбор базиса в пространстве Vреализует Л. г. как группу невырожденных квадратных матриц степени пнад телом К. Тем самым устанавливается изоморфизм … Математическая энциклопедия

    Численные методы решения методы, позволяющие получить решение Л. к. з. в виде таблицы его приближенных значений в точках сетки, не используя предварительной информации об ожидаемом виде решения. Для теории этих методов типично предположение о том … Математическая энциклопедия

    Метод решения класса задач статистич. оценивания, в к ром новое значение оценки представляет собой поправку к уже имеющейся оценке, основанную на новом наблюдении. Первая процедура С. а. была предложена в 1951 X. Роббинсом(Н. Robbins) и С. Монро… … Математическая энциклопедия

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВПО «ВГТУ», ВГТУ)

Факультет радиотехники и электроники

Кафедра высшей математики и физико-математического моделирования


КУРСОВАЯ РАБОТА

по дисциплине: Математика

Тема: «Методы аппроксимации функций»


Разработал студент группы КП-121

И.С. Кононученко

Руководитель Кострюков С.А


ЗАДАНИЕ на курсовую работу


Тема: «Методы аппроксимации функций».

Студент группы КП-121 Кононученко Илья Сергеевич

1. Методы аппроксимации функций.

1.1. Непрерывная аппроксимация.

2. Точечная аппроксимация.

3. Интерполяционный полином Лагранжа.

4. Интерполяционный полином Ньютона.

5. Погрешность глобальной интерполяции.

6. Метод наименьших квадратов.

7. Подбор эмпирических формул.

8. Кусочно-постоянная интерполяция

9. Кусочно-линейная интерполяция.

2. Практическая часть.

2.1. Построить интерполяционный многочлен для функции f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена.

2.2. Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ??(х)=Ах2+Вх+С. Найти х, для которого f(x)=10.



1. Методы аппроксимации функций

1.1 Непрерывная аппроксимация

1.2 Точечная аппроксимация

4 Интерполяционный полином Ньютона

8 Кусочно-постоянная интерполяция

9 Кусочно-линейная интерполяция

Практическая часть

2.1 Построить интерполяционный многочлен для функции f(x)=lnx-по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена

2.2 Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С. Найти х, для которого f(x)=10

Список литературы


1.МЕТОДЫ АППРОКСИМАЦИИ ФУНКЦИЙ


1.1Непрерывная аппроксимация


Если исходная функция f(x) задана аналитическим выражением, то при построении аппроксимирующей функции возможно требовать минимальности отклонения одной функции от другой на некотором непрерывном множестве точек, например, на отрезке. Такой вид аппроксимации называется непрерывным или интегральным.

Теоретически для наилучшего приближения целесообразно требовать, чтобы во всех точках некоторого отрезка отклонения аппроксимирующей функции от функции f(x) было по абсолютной величине меньше заданной величины:

В этом случае говорят, что функция равномерно приближает функцию f(x) с точностью e на интервале. Практическое получение равномерного приближения представляет большие трудности, и поэтому этот способ применяется главным образом в теоретических исследованиях.

Наиболее употребительным является так называемое среднеквадратичное приближение, для которого наименьшее значение имеет величина

Потребовав обращения в нуль частных производных от М по параметрам, определяющим функцию, получают уравнения, позволяющие найти наилучшие значения этих параметров.


2 Точечная аппроксимация


Аппроксимация, при которой приближение строится на заданном дискретном множестве точек, называется точечной.

Для получения точечного среднеквадратичного приближения функции y=f(x), заданной таблично, аппроксимирующую функцию строят из условия минимума величины

где yi - значения функции f(x) в точках xi.

Основная сфера применения среднеквадратичного приближения - обработка экспериментальных данных (построение эмпирических формул).

Другим видом точечной аппроксимации является интерполирование, при котором аппроксимирующая функция принимает в заданных точках xi, те же значения yi , что и функция f(x), т.е. .


Рисунок 1

В этом случае, близость интерполирующей функции к заданной функции состоит в том, что их значения совпадают на заданной системе точек.

На рис. 1 показаны качественные графики интерполяционной функции (сплошная линия) и результаты среднеквадратичного приближения (пунктирная линия). Точками отмечены табличные значения функции f(x).


3 Интерполяционный полином Лагранжа


Лагранж предложил строить интерполяционный полином в виде разложения



где li(x) - базисные функции.

Для того, чтобы полином удовлетворял условиям Лагранжа, т.е. был бы интерполяционным, базисные функции li(x) должны обладать следующими свойствами:

) быть полином степени n

) удовлетворять условию

Лагранж показал, что функции, обладающие указанными свойствами, должны иметь следующий вид


С учетом этого выражения интерполяционный полином Лагранжа может быть записан в виде

В отличие от интерполяционного полинома в канонической форме для вычисления значений полинома Лагранжа не требуется предварительно определять коэффициенты полинома путем решения системы уравнений. Однако для каждого значения аргумента x полином Лагранжа приходится пересчитывать вновь, коэффициенты же канонического полинома вычисляются только один раз. Поэтому практическое применение полинома Лагранжа оправдано только в том случае, когда интерполяционная функция вычисляется в сравнительно небольшом количестве точек x.

Интерполяционный полином Лагранжа оказывается очень удобным для приближенного вычисления определенных интегралов. Если, например, некоторую функцию заменить интерполяционным полином Лагранжа, то определенный интеграл от нее может быть вычислен следующим образом



Значения интегралов от не зависят от f(x) и могут быть легко вычислены аналитически.


1.4 Интерполяционный полином Ньютона


Рассмотрим еще одну форму записи интерполяционного полинома


Требования совпадения значений полинома с заданными значения функции в узловых точках Ni(xi)=yi, i=0,1,…,n приводит к системе линейных уравнений с треугольной матрицей для неизвестных коэффициентов:



решить которую не составляет труда.

Интерполяционный полином называется полиномом Ньютона. Интересная особенность полинома Ньютона состоит в том, что каждая частичная сумма его первых (m+1) слагаемых представляет собой интерполяционный полином степени m, построенный по первым (m+1) табличным данным.


5 Погрешность глобальной интерполяции


Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью



Можно показать, что погрешность Rn(x) определяется следующим выражением


Здесь - производная (n+1) порядка функции f(x) в некоторой точке, а функция определена как

Если максимальное значение производной f (n+1)(x) равно



то для погрешности интерполяции следует оценка



Конкретная величина погрешности в точке x зависит, очевидно, от значения функции в этой точке. Качественный характер зависимости показан на рис. 2.


Рисунок 2

Вследствие описанного поведения погрешности, глобальная интерполяция в некоторых случаях может давать совершенно неудовлетворительный результат. Из рисунка видно, что погрешность интерполяции тем выше, чем ближе точка x лежит к концам отрезка. За пределами отрезка интерполяции (т.е. при экстраполяции) быстро растет, поэтому погрешность возрастает существенно.


1.6 Метод наименьших квадратов


Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: y=?(a0,a1,…,am) с неизвестными коэффициентами a0,a1,…,am . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:


S(a0,a1,…,am)=(?(x1,a0,a1,…,am)-fi)2


Параметры a0,a1,…,am будем находить из условия минимума функции S(a0,a1,…,am). В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от S по равны нулю:

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

?(x)=a0+a1x+a2x2+…+amxm


Формула (1) для определения суммы квадратов отклонений примет вид:

S(a0,a1,…,am)=(a0+a1x+a2x2+…+amxm-fi)2 (2)


Вычислим производные

Приравнивая эти выражения к нулю и собирая коэффициенты при неизвестных a0,a1,…,am , получим следующую систему линейных уравнений

Данная система уравнений называется нормальной. Решая эту систему линейных уравнений, получаем коэффициенты.

В случае полинома первого порядка m=1, т.е. , система нормальных уравнений примет вид


При m=2 имеем:

Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффициенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклонений.


1.7 Подбор эмпирических формул


При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции. Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

аппроксимация полином интерполяция формула

Рисунок 3


Тогда говорят о подборе эмпирических формул. Построение эмпирической формулы состоит из двух этапов подбора вида этой формулы, содержащей неизвестные параметры a0,a1,…,am, и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. F(x)=a0+a1x+a2x2+…+amxm .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.


1.8 Кусочно-постоянная интерполяция


На каждом отрезке интерполяционный многочлен равен константе, а именно левому или правому значению функции.

Для левой кусочно-линейной интерполяции

F(x)= fi-1, если xi-1 ?x

Для правой кусочно-линейной интерполяции F(x)= fi-1, если xi-1

Легко понять, что условия интерполяция выполняются. Построенная функция является разрывной, что ограничивает ее применение. Для левой кусочно-линейной интерполяции имеем графическое представление


Рисунок 4


1.9 Кусочно-линейная интерполяция


На каждом интервале функция является линейной Fi(x)=kix+li. Значения коэффициентов находятся из выполнения условий интерполяции в концах отрезка: Fi(xi-1)=fi-1, Fi(xi-1)=fi . Получаем систему уравнений: kixi-1+ li= fi-1, kixi+ li= fi , откуда находим ki=li= fi- kixi .

Следовательно, функцию F(x) можно записать в виде:


F(x)= x+ fi- kixi , если, т.е.

Или F(x)=ki ·(x-xi-1)+fi-1, ki = (fi - fi-1) / (xi - xi-1), xi-1 ? x ? xi, i=1,2,...,N-1


При использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение x, а затем подставить его в формулу.

Итоговая функция будет непрерывной, но производная будет разрывной в каждом узле интерполяции. Погрешность такой интерполяции будет меньше, чем в случае кусочно-постоянной интерполяции. Иллюстрация кусочно-линейной интерполяции приведена на рисунке


Рисунок 5


2. ПРАКТИЧЕСКАЯ ЧАСТЬ


2.1 Построим интерполяционный многочлен для функции


f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12.


Формула для вычисления данного многочлена выглядит следующим образом:



где n- количество узлов.

Рассчитаем значения базисных полиномов.

Формула для расчета базисных полиномов:



Запишем значения узлов функции:

Вычислим значения функций f(x) в соответствующих узлах:

f(x0)==0.6931471805599453-1.5=-0.8068528194400547(x1)= =1.386294361119891-1.25=0.136294361119891(x2)= =1.791759469228055-1.1666666666666667=0.625092802561388(x3)= =2,079441541679835-1.125=0.954441541679835(x4)= =2.302585092994045-1.1=1.202585092994045(x5)= =2.484906649788-1.083333333333333=1.401573316454667


Рассчитаем значения соответствующих базисных полиномов:



Запишем формулу вычисления многочлена f(x)=lnx- по полученным данным:

L(x)=f(x0)·l0(x)+ f(x1)·l1(x)+ f(x2)·l2(x)+ f(x3)·l3(x)+ f(x4)·l4(x)+ f(x5)·l5(x).

Подставим в формулу полученные значения:

L(x)=((- 0.8068528194400547) ·(x-4)(x-6)(x-8)(x-10)(x-12)+ +0.136294361119891·5(x-2)(x-6)(x-8)(x-10)(x-12)- 0.625092802561388·10·

· (x-2)(x-4)(x-8)(x-10)(x-12)+ 0.954441541679835·10(x-2)(x-4)(x-6)(x-10)(x-12)-1.202585092994045·5(x-2)(x-4)(x-6)(x-8)(x-12)+ 1.401573316454667·

·(x-2)(x-4)(x-6)(x-8)(x-10)=0,000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+1.50294940468648·x-2.886362165898854

Рисунок 6

L(x)= 0.000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+

50294940468648·x-2.886362165898854

Из рисунка видно, что графики функций совпадают.

Вычислим приближенное значение логарифма от 5,75 с точностью до 0,001.

Воспользуемся разложением



Пользуясь формулой



посчитаем приближенное значение логарифма:

Получим оценку погрешности остаточного члена:

Формула нахождения остаточного члена в других точках:

Rn(x)=f(x)-Ln(x).

Подставим значения и вычислим остаточный член:

Rn(x)= -0.234721044665224-(-0.149875603361276)= 0.0122

Для абсолютной погрешности интерполяционной формулы Лагранжа можно получить следующую оценку:


0122374?9.9512361


Из оценки следует, что выбирая достаточно большое число точек разбиения можно получить результат с необходимой точностью.

Функцию f(x), заданную таблицей аппроксимируем линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С.


x10151720f(x)371117Решение:

Для решения этой задачи воспользуемся методом наименьших квадратов.

Система нормальных уравнений для линейной зависимости (x)=Ax+B:

Учитывая, что n=4: ;

Решаем систему линейных уравнений:

Следовательно, линейная зависимость будет иметь вид:

Рассмотрим квадратичную зависимость?(х)=Ах2+Вх+С. Система нормальных уравнений имеет вид:


Найдем не подсчитанные суммы:

Следовательно, квадратичная зависимость будет иметь вид:


Рисунок 7

Функция, заданная таблицей.

Линейная зависимость

Квадратичная зависимость


По графику найдем значение х, для которого f(x)=10.

Список литературы


1. Кириллова С.Ю. Вычислительная математика/Кириллова С.Ю. Изд-во Владим. гос. ун-та, 2009. -102с.

2. Справочное пособие по приближенным методам решения задач высшей математики/ Л.И. Бородич, А.И. Герасимович, Н.П. Кеда и др.; под ред. Л.И. Бородич.- М.: Высшая школа, 1986. -189с.

3. Тюканов, А.С. Основы численных методов: учеб. пособие для студентов. Изд-во РГПУ им. А.И. Герцена, 2007. -226с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png