Переменная величина называется случайной , если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определеное значение х i или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.

Случайная величина Х называется дискретной , если существует такая неотрицательная функция

которая ставит в соответствие значению х i переменной Х вероятность р i , с которой она принимает это значение.

Случайная величина Х называется непрерывной , если для любых a < b существует такая неотрицательная функция f (x ), что

(2)

Функция f (x ) называется плотностью распределения непрерывной случайной величины.

Вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х , называется функцией распределения случайной величины Х и обозначается F (x ) :

(3)

Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.

Общие свойства функции распределения:

(4)

Кроме этого универсального, существуют также частные виды законов распределения: ряд распределения (только для дискретных случайных величин) и плотность распределения (только для непрерывных случайных величин).

Основные свойства плотности распределения:

(5)

Каждый закон распределения – это некоторая функция, полностью описывающая случайную величину с вероятностной точки зрения. На практике о распределении вероятностей случайной величины Х часто приходится судить только по результатам испытаний. Повторяя испытания, будем каждый раз регистрировать, произошло ли интересующее нас случайное событие А , или нет. Относительной частотой (или просто частотой ) случайного события А называется отношение числа n A появлений этого события к общему числу n проведенных испытаний. При этом мы принимаем, что относительные частоты случайных событий близки к их вероятностям. Это тем более верно, чем больше число проведенных опытов. При этом частоты, как и вероятности, следует относить не к отдельным значениям случайной величины, а к интервалам. Это значит, что весь диапазон возможных значений случайной величины Х надо разбить на интервалы. Проводя серии испытаний, дающих эмпирические значения величины Х , надо фиксировать числа n x попаданий результатов в каждый интервал. При большом числе испытаний n отношение nx / n (частоты попадания в интервалы) должны быть близки к вероятностям попадания в эти интервалы. Зависимость частот nx / n от интервалов определяет эмпирическое распределение вероятностей случайной величины Х , графическое представление которой называется гистограммой (рис. 1).

Рис. 1. Гистограмма и выравнивающая плотность распределения

Для построения гистограммы по оси абсцисс откладывают интервалы равной длины, на которые разбивается весь диапазон возможных значений случайной величины Х , а по оси ординат откладывают частоты nx / n . Тогда высота каждого столбика гистограммы равна соответствующей частоте. Таким образом, получается приближенное представление закона распределения вероятностей для случайной величины Х в виде ступенчатой функции, аппроксимация (выравнивание) которой некоторой кривой f (x ) даст плотность распределения.

Однако, часто бывает достаточно указать только отдельные числовые параметры, характеризующие основные свойства распределения. Эти числа называются числовыми характеристиками случайной величины.

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.

Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина

могущая принять любое значение из сегмента . Поэтому и ( < ) - две любые отметки на шкале, то согласно условию имеем - коэффициент пропорциональности, не зависящий от и , а разность , - длина сегмента . Так как при =a и =b имеем , то , откуда .

Таким образом

(1)

Теперь легко найти функцию F(x) распределения вероятностей случайной величины

. Если , то не принимает значений, меньших a. Пусть теперь . По аксиоме сложения вероятностей . Согласно формуле (1), в которой принимаем , имеем , то при получаем

Наконец, если

, то , так как значения лежит на сегменте и, следовательно, не превосходят b . Итак, приходим к следующей функции распределения:

График функции

представлен на рис. 1.

Плотность распределения вероятностей найдем по формуле. Если

или , то . Если , то

Таким образом,

(2)

График функции

изображен на рис. 2. Заметим, что в точках a и b функция терпит разрыв.

Величина, плотность распределения которой задана формулой (2), называется равномерно распределенной случайной величиной.

3. Биномиальное распределение

Биномиальное распределение в теории вероятностей - распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна p .

- конечная последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину Y .

Плотность нормального распределения имеет следующий вид:

где a - центр распределения вероятностей или математическое ожидание данной случайной величины, т. е.

среднеквадратическое отклонение данной случайной величины.

На практике исчисляются соответствующие статистические оценки. Так, оценкой для математического ожидания будет средняя величина:

где количество данных в рассматриваемом статистическом массиве.

Математическое ожидание есть то теоретическое значение данной случайной величины, к которому стремится средняя величина при неограниченном увеличении количества данных.

Среднеквадратичное отклонение:

В логистике то или иное значение величины оценивается значением

при этом оценивается коэффициент вариации:

На рисунке 4 представлен график нормального распределения вероятностей.

Рисунок 4- Нормальный закон распределения вероятностей

Плотность экспоненциального закона распределения вероятностей имеет следующий вид:

где основание натурального логарифма.

Экспоненциальный закон описывает временные параметры случайных логистических процессов. Под экспоненциальный закон попадают следующие случайные величины:

1) время обслуживания покупателей;

2) время погрузки-выгрузки транспортных средств;

3) время, затрачиваемое на выполнение прочих логистических операций

4) интервал между заявками, приходящими на обслуживание.

Особенностью экспоненциального закона является то, что он определяется одним параметром. При этом

где среднее значение исследуемого временного параметра.

Для величин, подчиняющихся экспоненциальному закону, математическое ожидание М и среднеквадратическое значение равны между собой:

На рисунке 5 представлен график экспоненциального закона.

Рисунок 5- Экспоненциальный закон распределения вероятностей

Биномиальный закон распределения вероятностей

Биноминальный закон распределения вероятностей выражается формулой:

Данный закон определяет вероятности наступления событий из общего числа событий

где вероятность наступления одного события из данной группы событий;

вероятность ненаступления указанного события,

Величина количество сочетаний из по , определяется по формуле:

Для вычисления числа сочетаний используется равенство:

При биноминальном распределении наивероятнейшее число событий равно:

Сравнение законов распределения вероятностей. Критерий согласия

В теории вероятностей существуют методы, позволяющие оценивать степень соответствия фактических распределений вероятностей их теоретическим значениям. С этой целью используются так называемые критерии согласия, наиболее известным из которых является критерий. Данный критерий позволяет сравнивать между собой эмпирические законы распределения, полученные по одним и тем же фактическим данным.

Чем меньше значение, тем лучше данный эмпирический закон согласуется с теоретическим. Для сравнения эмпирических законов распределения вероятностей вычисляются значения по следующей формуле:

Где соответственно фактические и теоретические значения частот исследуемых законов распределения.

Величина так же является случайной, а поэтому подчиняется своему закону распределения. Подход к сравнению эмпирических законов распределения можно показать на примере.

Установим, какой закон распределения вероятностей- нормальный или экспоненциальный- лучше отражает распределение данной величины, т.е. осуществим проверку гипотез. В качестве исследуемой величины берём объём реализации определённого товара. Исходные данные представлены в таблице 3:

Таблица 3. Сведения о реализации товара

Реализация (тыс.руб.)

Задача формулируется следующим образом: построить распределение вероятностей величины спроса на данный товар, если в результате проведённого исследования получены результаты о реализации, в тыс. руб. в день.

Решение задачи представлено в приложении 4.

В общем случае ряд логистических процессов, а именно: продажи, отгрузка продукции с оптово-торговых предприятий, движение запасов, оказание услуг при поставках продукции, расходование материальных ресурсов и т.п. описывается нормальным законом распределения вероятностей. Отличительный признак данного распределения- наличие выраженной симметрии случайных величин относительно их среднего значения. Для указанных процессов нормальный закон применим для всей продукции, определённых ассортиментных групп или отдельных наименований товаров.

При ABC-анализе структуры логистических процессов, получаемые характеристики в стоимостном или натуральном выражениях подчинены экспоненциальному распределению.

Тот факт, что реализация продукции соответствует нормальному закону, имеет важное значение для логистики, поскольку позволяет определять величину товарного запаса, для чего рекомендуется следующая формула:

где необходимая величина товарного запаса на неопределённый период,

средняя реализация в единицу времени(день, неделя, месяц),

среднеквадратическое отклонение.

Для рассмотренного примера товарный запас равен:

Данная модель показывает, что любое требование покупателя на то или иное качество товара должно быть удовлетворено с вероятностью близкой к 1. В этой модели используется правило "трёх сигм". В нормальном законе соответствует вероятности 0,99.

В современных условиях компьютерные технологии позволяют отслеживать в текущем режиме времени среднюю реализацию и среднеквадратические отклонения, а так же корректировать величину товарного запаса.

Предоставленная модель определения товарного запаса может быть использована как для розничной, так и для оптовой торговли.

СЛУЧАЙНЫХ ВЕЛИЧИН

Сначала рассмотрим некоторые законы распределения дис- кретных случайных величин.

      4.1 Биномиальное распределение .

Пусть случайная величина - это число появлений неко -торого событияв серии изнезависимых испытаний, в каждом из которых вероятность появления события
, а вероятность не появления события
Ряд распределения такой величины имеет вид:

где
. Такой ряд распределения называетсябиномиальным . Математическое ожидание случайной величины
в этом случае имеет вид:

(1)

Для вычисления этого выражения, продифференцировав по следующее выражение:
получим

Если мы умножим это равенство на , получим

(2)

Но
а правые части равенств (1) и (2) совпадают, тогда

Продифференцировав то же самое выражение дважды, получим

Умножив полученное равенство на , получим:

Таким образом,

Отсюда Тода

Итак, для биномиального распределения:

Пример. Произведено 20 независимых выстрелов по мише- ни. Вероятность попадания при каждом выстреле
. Найти математическое ожидание, дисперсию и среднее квад -ратическое ожидание числа попаданий.

Случайная величина
- число попаданий, распределена по биномиальному закону.Тогда

      4.2 Распределение Пуассона.

Определение. Дискретная случайная величина
имеет

закон распределения Пуассона , если она задаётся рядом рас- пределения

в котором вероятности определяются по формуле Пуассона

(3)

где (- среднее число появлений события в серии испытаний, в каждом из которых вероятность появления события постоянная величина
).

Приведём без доказательства следующую теорему.

ТЕОРЕМА . Математическое ожидание и дисперсия случай -ной величины, распределённой по закону Пуассона, совпадают и равны параметру этого закона, т.е.

При достаточно больших (вообще при
) и малых значениях
при условии, что произведение
- постоянная величина (
), закон распределения Пуассона является хорошим приближением биномиального за –кона, т.е. распределение Пуассона - это асимптотическое рас -пространение биномиального закона. Иногда этот закон назы -ваютзаконом редких явлений. По закону Пуассона распреде- лены, например, число сбоев автоматической линии, число от- казов системы в «нормальном режиме», число сбоев в работе АТС и т.п.

      4.3 Геометрическое распределение.

Определение. Дискретная случайная величина
име- етгеометрическое распределение , если
, где для некоторого события,

и её ряд распределения имеет вид:

В этом случае вероятности представляют собой бесконечно убывающую геометрическую прогрессию и её сумма

ТЕОРЕМА . В случае случайной величины, имеющей геомет- рическое распределение с параметром , математическое ожидание и дисперсия вычисляются по формулам:

Пример. Производятся выстрелы по мишени до первого попа- дания. Вероятность попадания при каждом выстреле
.

Составить ряд распределения случайной величины
- «чис- ло попаданий». Найти её математическое ожидание и среднее квадратическое отклонение.

По теореме,

среднее квадратическое отклонение

      Гипергеометрическое распределение .

Пусть в партии из
изделий имеется
стандартных. Случайным образом отбираютизделий. Пусть случайная величина
- число стандартных изделий среди отобранных. Очевидно, озможные значения этой случайной величины:

Вероятности возможных значений вычисляются по формуле:

Для этой случайной величине математическое ожидание вы- числяется по формуле
а дисперсия:

Пример. В урне находится 5 белых и 3 чёрных шара. Слу- чайным образом отобраны 3 шара. Составить ряд распределе- ния случайной величины
- числа белых шаров среди ото –бранных. Найти её математическое ожидание и дисперсию.

Возможные значения этой случайной величины: 0, 1, 2, 3. найдём их вероятности:

Получаем ряд распределения:

Математическое ожидание можно вычислить непосредственно, пользуясь известными формулами, а можно воспользоваться формулами из теоремы. В нашем примере

. Тогда

Теперь рассмотрим основные законы распределения непре- рывных случайных величин.

      4.5 Равномерное распределение.

Определение. Непрерывная случайная величина имеет рав -номерное распределение на отрезке
, если она имеет постоянное значение на этом отрезке и равна нулю вне этого отрезка, т.е. график её плотности имеет вид:

Так как площадь под графиком плотности распределения должна быть равна единице, то
Тогда

Её функция распределения имеет вид:


и её график

      4.6 Показательное распределение .

В практических приложениях теории вероятностей (напри-

мер, в сфере массового обслуживания, исследовании опера -ций, теории надёжности, в физике, биологии и т.п.) часто при- ходится иметь дело со случайными величинами, имеющими так называемое экспоненциальное, или показательное распре- деление.

Определение. Непрерывная случайная ыеличина
рас- пределена попоказательному закону , если её плотность распределения вероятностей имеет вид:

График этой функции:


0

Её функция распределения:


имеет график

О

Математическое ожидание:

Пример. Пусть случайная величина
- время работы не- которого механизма, имеет показательное распределение. Оп- ределить вероятность того, что механизм будет работать не менее 1000 часов, если среднее время его работы составляет 800 часов.

По условию задачи, математическое ожидание работы меха- низма
, а
. Тогда

Следовательно,

Искомая вероятность:

Замечание. Показательное распределение относится к од -нопараметрическим законам распределения (зависит только от ).

      4.7 Нормальное распределение.

Определение. Нормальным называют распределение вероят- ностей непрерывной случайной величины, которое имеет плот- ность распределения вероятностей, определяемую формулой:


(1)

Видим, что нормальное распределение определяется двумя параметрами : и. Чтобы задать нормальное распре -деление, достаточно задать эти два параметра.

Нормальный закон распределения очень широко распро- странён в задачах практики. Он проявляется в тех случаях, когда случайная величина
является результатом действи- ем большого числа различных факторов. Каждый фактор в отдельности влияет на случайную величину незначительно и нельзя сказать, какой из них влияет в большей степени, чем остальные. Примерами случайных величин, имеющих нормаль- ное распределение, можно считать: отклонение размеров дета- лей, изготовленных станком, от стандартных; ошибки при из -мерении; отклонения при стрельбе по мишени и т.п.

Основной закономерностью, выделяющей нормальный закон из остальных законов, является та, что он является предель -ным законом, к которому приближаются другие законы, т.е. при достаточно большом значении сумма независимых слу- чайных величин
, подчинённых каким угодно законам распределения, будет иметь распределение, сколь угодно близкое к нормальному.

Функция распределения нормально распределённой случай –ной величины имеет вид

(2)

По определению математического ожидания непрерывной случайной величины,

Введём новую переменную

Принимая во внимание, что новые пределы интегрирования равны старым, получим

Первой слагаемое равно нулю, как интеграл по симметрич -ному промежутку от нечётной функции. Второе из слагаемых равно (интеграл Пуассона
).

Таким образом, математическое ожидание нормально рас- пределённой случайной величины

По определению дисперсии непрерывной случайной величи- ны, учитывая, что
, получим

Снова введём новую переменную

Получим
Применив формулу интегрирования по частям и предыдущие вычисления, получа- ем
Тогда
Следовательно, вторым параметром нормального распределенияявляется сре- днее квадратическое отклонение.

Замечение. Нормированным называют нормальное распре –деление с параметрами
Плотность нормиро -ванного распределения задаётся функцией:

(3)

значения которой можно либо найти непосредмьвенно, либо воспользоватся соответствующими таблицами, которые можно найти во всех справочниках. Функция нормированного распре –деления имеет вид
. Тогда функция общего нормального распределения, заданная т формулой (2), выражается формулой
. Вероятность попа- дания нормированной нормально распределённой случайной величины
в интервал
определяется с помощью функции Лапласа
, значения которой также приведены в таблицах. В самом деле,

Учитывая, что
(по свойству плотности распре- деления,), в силу симметрии функции
относительно точ- ки
:

Тогда

График плотности нормального распределения называют нормальной кривой или кривой Гаусса .

Исследуем функцию:

Она определена на всей числовой прямой и положительна для всех . При неограниченном возрастанииданная функция стремится к нулю, т.е.
Производная этой функции
.

Производная равна 0 в точке
и меняет в этой точке знак с «+» на «-», т.е.
- точка максимума и в этой точке
. Найдя вторую производную функции, можем выяснить, что график функции имеет перегибы в точ- ках
. Схематически график выглядит следующим образом:


0

Для нормально распределенной случайной величины ве- роятность попадания в заданный интервал
вычисля –ется следующим образом:

Сделаем замену
.


где
.

Таким образом,


(4)

Пример. Масса вагона - случайная величина, распределён -ная по нормальному закону с математическим ожиданием 65 т. и средним квадратическим отклонением
т. Найти веро- ятность того, что очередной вагон имеет массу не более 70 т. и не менее 60 т

Иногда требуется вычислить вероятность того, что случай -ная величина по модулю отклоняется от среднего значения меньше чем некоторое значение , т.е.
. Для вычисления этой вероятности можем воспользоваться предыдущей формулой. В самом деле:

учитывая нечётность функции
. Следовательно,

(5)

Пример. Вероятность того, что нормально распределённая случайная с математическим ожиданием
откло- нится от среднего значения меньше чем на
равна 0.09. Чему равна вероятность попадания этой случайной величины в интервал (30, 35) ?

По условию,
Тогда
По таблице значений функции Лапласа, по – лучаем:
Тогда требуемая вероятность, по формуле (4),

Правило трёх сигм.

В формуле (5) положим
, получим

Если
и, следовательно,
, получаем:

т.е. вероятность того, что отклонение по абсолютной величине случайной величины от среднего значения меньше утроенного среднего квадратического отклонения равна 0,9973, т.е. очень близка к единице.

Правило трёх сигм состоит в том, что для нормально рас- пределённой случайной величины абсолютная величина её -отклонения от среднего не превосходит утроенного сред -него квадратического отклонения. На практике это правило применяется слудующим образом: Если распределение слу -чайной величины неизвестно, но для её параметров выпол -няется правило трёх сигм, то есть основание предположить, что она распределена по нормальному закону.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png